Now we will run a power envelope analysis on the device data we uploaded in the previous notebook.
As before, make sure you have the following environment variables set or added to a .env file:
GDSFACTORY_HUB_API_URL="https://{org}.gdsfactoryhub.com"
GDSFACTORY_HUB_QUERY_URL="https://query.{org}.gdsfactoryhub.com"
GDSFACTORY_HUB_KEY="<your-gdsfactoryplus-api-key>"
project_id = f"spirals-{getpass.getuser()}"
client = gfh.create_client_from_env(project_id=project_id)
api = client.api()
query = client.query()
utils = client.utils()
You can either trigger analysis automatically by defining it in the design manifest, using the UI or using the Python DoData library.
rolling_window.run(
device_data_pkey=device_data["pk"],
xname="wavelength",
yname="output_power",
xlabel="Wavelength [nm]",
ylabel="Power [mW]",
x0=1550,
)
{'output': {'wavelength': 1550.0,
'output_power_low': 0.2579795522456139,
'output_power_mean': 0.2890758853785011,
'output_power_high': 0.31564956304099945},
'summary_plot': <Figure size 640x480 with 1 Axes>,
'device_data_pkey': '3ae46fc0-c669-4a69-84c6-5b04bd5756a1'}

# don't error out when function already exists in DoData.
with gfh.suppress_api_error():
result = api.upload_function(
function_id="rolling-window",
target_model="device_data",
test_target_model_pk=device_data["pk"],
file=gfh.get_module_path(rolling_window),
test_kwargs={
"xname": "wavelength",
"yname": "output_power",
"xlabel": "Wavelength [nm]",
"ylabel": "Power [mW]",
"x0": 1550,
},
)
Duplicate function
results = []
dd_pks = [d["pk"] for d in query.device_data().execute().data]
for dd_pk in tqdm(dd_pks):
with gfh.suppress_api_error():
result = api.start_analysis(
analysis_id=f"rolling-window_{dd_pk}",
function_id="rolling-window",
target_model="device_data",
target_model_pk=dd_pk,
kwargs={
"xname": "wavelength",
"yname": "output_power",
"xlabel": "Wavelength [nm]",
"ylabel": "Power [mW]",
"x0": 1550,
},
)
results.append(result)
0%| | 0/378 [00:00<?, ?it/s]
Let's have a look at the last analysis:
analysis_pks = [r["pk"] for r in results]
utils.analyses().wait_for_completion(pks=analysis_pks)
analyses = query.analyses().in_("pk", analysis_pks).execute().data
succesful_analyses = [a for a in analyses if a["status"] == "COMPLETED"]
analysis = succesful_analyses[-1]
img = api.download_plot(analysis["summary_plot"]["path"])
img.resize((530, 400))
Waiting for analyses: 0%| | 0/378 [00:00<?, ?it/s]
